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Abstract

Physics does not depend on the representation, but your life surely
does.

In this short note, we review the basic bosonization method studying
the interacting 1D system [and then we review the rigorous developments
and techniques. Several applications will be presented as examples of this
powerful technique.](Omitted)

1 Luttinger Model: Interacting electron in 1D

We consider the nearly free electron in 1D, which is called Luttinger model. The
Hamiltonian reads:

H =
∑
k

a†k

(
k2

2m
− EF

)
ak +

1

2L

∑
k,k′,q 6=0

V (q) a†k−qa
†
k′+qak′ak (1.1)

Where a†k denotes a spinless electron( and you can recover the spin band
then, or you can simply consider a fully spin-polarized band), EF is the chemical
potential, L is the length of the system and V (q) = 4π

q2 denotes the interaction.
We first split the Hamiltonian into non-interacting part and the interacting

term, i.e H = H0 + V (q). The most particular feature that highlights the 1D
system is that only density fluctuations are essential. One can picture this by the
fact that optimizing the 1D fermions, electrons can merely push each other but
in higher-dimension, electron can move around to reach the optimizing state.

The 1D system’s Fermi surface, only containing two isolated points {−kF , kF },
is also different from the higher-dimensional case. We first try to reshape the
free Hamiltonian, in order to obtain some insights about the problem.
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1.1 Expanding the free Hamiltonian

It’s natural to expand the system near Fermi surface as the collective exicitations
are merely related to the physics that happens near the Fermi surface.

By using the Taylor expansion:

k2

2m
=
k2F
2m

+ σvF (k − kF ) +O
(
k2
)

(1.2)

Where σ = ± denote the right-moving fermion(+) and the left-moving
fermion(−).

The Hamiltonian H0 can be approximated as:

H =
∑
k,σ

vF (σk − k)a†σ,kaσ,k (1.3)

Which can be immediately recognized as a Dirac Hamiltonian. It should be
always remembered that the summation is taken when the linear approximation
is validate, i.e, |k − kF | < Λ, a cut-off is added to the summation. As the basic
excitation of this model is particle-hole excitation, one wants to test if the
particle-hole quasi-excitation have well-defined momentum and other quantum
number, which can be achieved by write down the spectrum of particle-hole:

ER,k (q) = ER (k + q)− ER (k) = vF (k + q)− vF k = vF q (1.4)

Thus, the linear system have well-defined particle-hole excitations. So it’s then
natural to using the corresponding operator Σka

†
σ,k+qaσ,k to rewrite our Hamil-

tonian. This is a very important point, from which we develop a whole method
named ‘bosonization’. One can also check directly that this operator is the
Fourier transform of the density operator:

ρq =
1

2π

∫
dxeiqxρ (x) =

1

2π

∫
dxeiqxa†xax

=

(
1

2π

)3∑
k,k′

∫
dxeiqxeikxa†ke

−ik′xak′ =
∑
k

a†k+qak

(1.5)

And naturally ρ†q = ρ−q as the density operator is Hermitian.

1.2 Calculating the of the density operator

Before we go further to demonstrate the idea, we should be cautious to avoid
infinities when treating the Fourier transformation of (i.e, a linear combination
of ) the density operator. Because in Dirac-like Hamiltonian, it is permitted
that infinite occupation below the Fermi energy. To this end, we introduces
so-called normal ordering tricks:

In a normal ordered product, the destruction operators are put on the right
and creation operators on the left. For two operator A,B that are linear com-
binations of creation and destruction operator, normal ordering operation is
equivalent to the original operator subtracting the average value of the operator
in the vacuum, i.e:

: AB := AB − 〈0|AB |0〉 (1.6)
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Then our goal is to figure out the commutation relation of this density op-
erator, and take the linear superposition of them to recover the Hamiltonian
Eq(3). The fronter procedure can be accomplished by writing down:

[ρσ,q, ρσ,−q′ ] =
∑
k1,k2

[
a†σ,k1+qaσ,k1, a

†
σ,k2−q′aσ,k2

]
=
∑
k1k2

a†k1+qak2δk1,k2−q′ − a
†
k2−q′ak1δk2,k1+q

=
∑
k2

a†σ,k2+p−p′aσ,k2 − a
†
σ,k2−p′aσ,k2−p

(1.7)

In the second line we omit the right-left index for simplicity. We may naively
change the index of summation and conclude that the result is zero, but which
turns out to be wrong:∑

k2

a†σ,k2+p−p′aσ,k2 −
∑

k2−p→k2

a†σ,k2+p−p′ak2
?
= 0

The reason is that the bare density operators(Fourier-transformed) contain
infinity number of occupied states and the equation becomes ∞ − ∞ indefi-

nite.(as an example, when k involves infinite modes, that
∑
k

bkb
†
k

!
=
∑
k

1 + b†kbk =

∞+
∑
k

b†kbk) So we try to use the normal ordering tricks to evaluate this quan-

tity because the matrix element of normal ordering operator is always finite. As
a matter of fact:

[ρσ,q′ , ρσ,−q′ ] =
∑
k2

: a†σ,k2+q−q′aσ,k2 : − : a†σ,k2−q′aσ,k2−q :

+
∑
k2

〈0| a†σ,k2+q−q′aσ,k2 |0〉 − 〈0| a
†
σ,k2−q′aσ,k2−q |0〉

(1.8)

Then, the first subtraction can be safely evaluated as zero. Making use of the
fact that 〈0| a†σkaσk′ |0〉 = δk,k′ we then get:

[ρσ,q′ , ρσ,−q′ ] = 0 + δq,q′
∑
k2

〈0|nσ,k2 − nσ,k2−q |0〉 (1.9)

One may then naively to conclude that the second term equals zero because at
a first glance ∑

k2

〈0|nσ,k2 |0〉
?
=
∑
k2

〈0|nσ,k2−q |0〉

But this is not true because we actually have a cut-off in momentum! Since the
shift k → k − p changes the cut-off, the result is exactly the number of state in
the interval [k, k + q]. Due to the well defined properties of the density in 1-D

system, the result is |q|
2π/L and independent of the cut-off properties of Λ. We

arrive at the conclusion:

[ρσ,q, ρσ′,−q′ ] = −δσ,σ′δq,q′
σqL

2π
(1.10)

The result is remarkable because of the bosonic properties of density operator
arising from the large number of occupied states we consider. Thus we are able
to recover the Hamiltonian we care about with bosonic density fluctuations.

3



1.3 Bosonization of Luttinger Model

We now construct the bosonic operator from the density operator. The method
is direct to some extents, but it can also provide some insights.

Note that, in the RHS of the Eq 1.10, the commutator is momentum depen-
dent. The natural way to remove this dependency is to partition the coefficients
to each density operators, i,e , ρσ,q → ρσ,q

(
L|q|
2π )1/2

.

Due to some sign considerations, one can finally (after some nontrivial trials)
write down the bosonization solution for this problem:

bq = nqρ+,q, b
†
q = nqρ+,−q

b−q = nqρ−,−q, b
†
−q = nqρ−,q

(1.11)

Where nq = ( 2π
L|q| )

1/2 and q > 0.

Compactly and equivalently: b†q = nq
∑
σ

Θ (σq) ρσ,−q, where Θ is the Heavi-

side theta function.
Having constructed the boson operator(b, b†), we are now to find a repre-

sentation. Before diving into the details, we can observe that a boson oper-
ator consists two fermion operator If we can use two boson operators to rep-
resent free Hamiltonian, it means that original two fermion operator should
be mapped to quadratic fermion operators, e.g ,a†aa†a = a†

[
δ − a†a

]
a =

δa†a −
(
a†a†aa

)
(neglect the subscripts). This also indicates that, if it’s pos-

sible to bosonize the free Hamiltonian, the interacting part is also quadratic
and supposed to be bosonized.

The Hamiltonian of a system can be constructed in many forms but the
evolution of the observable remains intact. As the Heisenberg equation in-
dicate, the only important element is the commutation relation between the
complete operator and the Hamiltonian. For example, we try to calculate the
anti-commutation rules of bq(q > 0) and H0:

[bq, H0] = nq
∑
σ

[
ρ+,p, vF (σk − kF ) a†σ,kaσ,k

]
= nq

∑
k,kq

vF (k − kF )
(
a†+,k1−qa+,kδk1−k − a

†
+,ka+,k1δk1−q−k

)
= nq

∑
k

vF qc
†
+,k−qc+,k = vF qbq

(1.12)

and similar relation holds when q < 0. We can ultimately write down the
transformed Hamiltonian:

H0 ' const+
∑
p 6=0

vF |p| b†pbp (1.13)
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And rewriting the interaction part is obvious:

V =
1

2π

∑
q>0

q
(
g4bqb

†
q + g4b

†
−qb−q + g2bqb−q + g2b

†
−qbq

)
=

1

2π

∑
q>0

q
(
bq b†−q

)
Kee

(
b†q

b−q

)

Kee =

(
g4 g2
g2 g4

)
(1.14)

The interaction part is also quadric but contains non-particle number-conserving
contributions. Together with free Hamiltonian, we can use Bogoliubov trans-
formation to diagonalize the Hamiltonian which is a trivial task.

To diagonalize the Hamiltonian:

H =
∑
q>0

qΨ†qKΨq,Ψq =

(
b†q

b−q

)
(1.15)

We need to find a transformation to diagonalize the kernel matrix and also
keep the generalized commutation relation intact. We find that:

Cij =
[
Ψq,i,Ψ

†
q,j

]
=

(
−1

1

)
ij

= (−σ3)ij

So the transformation matrix U should satisfy those condition:

H =
∑
q>0

qΨ
′†
q U
†KUΨ′q

U†KU =

(
λ1 0
0 λ2

)
U†σ3U = σ3

(1.16)

To this end, we find σ3U
†σ3︸ ︷︷ ︸

U−1

σ3KU = σ3K
′ which meansσ3K

′ contains

the eigenvalues ±u on its diagonal. and σ3K
′ = Diag(u,−u) means K ′ =

Diag(u, u). The eigenvalue of σ3K can be readily computed as u =

√
(g4+2πvF )2−g22

2π ,
we then arrive at the final result:

H = u
∑
q>0

qΨ†qΨ
′
q = u

∑
q

|q| b†qbq (1.17)

The observables, particularly some thermodynamics, can be extracted from
this Hamiltonian. The easiest calculation among them is the heat capacity:

CV =
dE

dT
=

d

dT

∑
p 6=0

ε (p) fB (ε (p))

= β2
∑
p 6=0

ε(p)
2 eβε

(eβε − 1)
2 =

T

u

(
Lπ

3

) (1.18)

One can compare this result with free fermion gas case: CV = T
vF

(Lπ3 )
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This kind of quasi excitation as the Bosonic operators describing the den-
sity fluctuations is termed charge density wave with the velocity u. In the
non-interacting limit, where g2 = g4 = 0, the waves have a velocity vF while
g2 = 0, g4 6= 0 will accelerate the wave. Intuitively, this can be interpreteda
as the nonzero g4 is the fictitious interaction. But when g2 6= 0, the Coulomb
interaction make it difficult for particles with opposite velocity move close to
each other.

1.4 Further consideration

We are now at a stage that the Hamiltonian is quadratic combination of the
boson p mode operator. To develop a corresponding field theory, we have a stan-
dard routine, which is exactly the inverse routine that we learned in standard
QFT or Quantum Optics.

We then consider the transformed field operator using the same technique
we developed before. The fermionic field operator is defined as the Fourier
transformation of the mode annihilation operator:

aσ (x) =
1√
2πL

∑
k

eikxaσ,k (1.19)

As the same spirit that the commutation relation can define the observables,
we have :

[ρσ (q) , aσ (x)] =
1√
2πL

∑
k,k1

eik1x
[
c†σ,k+qcr,k, cr,k1

]
= −eipxaσ (x)

(1.20)

So, we can construct the field operator as aσ (x)
!' e

∑
q
eiqxρσ(q)( 2πr

qL )
. But it’s not

true, because the density operator never create or destroy any fermion but the
field operator destroy a fermion in x. One wants to generate this as :

aσ (x) = Uσe

∑
q
eiqxρσ(q)( 2πr

qL )
(1.21)

Where the Uσ should destroy a fermion of state σ and commute with the bo-
son operator. There operators are known as ‘Klein factor’. Using the conditions
above, the dependence of the Klein factor on the boson operator can be derived.
But in the first example, it’s too tedious to do so, and few physics can be ex-
tracted by Klein factor, though this provides an exact and full transformation
from fermionic representation to a bosonic one.

2 Bosonization with a field theory

We now want to develop a bosonic field theory about the Luttinger model. Put
it in you heart that we even know the right answer to the theory because of the
universality of the wave mechanism :

H =
π

vF
Π2 +

vF
2π
∂xθ

2 (2.1)

Thus, all we need to do is to reshape and map our original free system to this
bosonic field theory. In other words, we want to recover the field Langragian
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density and Hamiltonian from the mode operator representation. To obtain an
effective long range theory of the 1D interacting system, we have two strategies.
The first one is to explictly construct the field theory from the mode operator
and the action of the operator on Fock state. Another more phenomenological
approach is based on consideration of the consistency and the symmetry ac-
quirement. Although this method lacks quantitative evaluation of the results,
we can gain some intuitions and even immediately obtain the right theory and
finally make it rigorous.

2.1 Euclidean Fermionic Field Theory

We use the language of Euclidean fermionic field theory to represent this system:

S0

[
ψ†, ψ

]
=
∑
σ

∫
dxdτψ†σ (−iσvF∂x + ∂τ )ψσ

Sint

[
ψ†, ψ

]
=

1

2

∑
σ

∫
dxdτ (g2ρσρσ′ + g4ρsρs)

(2.2)

As before, σ = ± and + for right-moving fermions while − for left-moving ones.
We will first show the phenomenological method. As we see, the 1D inter-

acting system can hold density wave excitation, so the fermionic part should
change the density of the system. As N = L

2π2kF → n0 = kF
π , the first part of

the bosonic operator is supposed to be kF
π + ρ (x). So we can write down the

transformation:

b (x) =

(
kF
π

+ ρ (x)

)1/2

eiφ(x) (2.3)

It can be easily shown that the transformation (b, b†)→ (ρ, φ) is canonical. For
simplicity, we recover the total density of the system ρ→ ρ+ kF

π , we thus have:

1 =
[
b, b†

]
=
[
ρ1/2eiλφ, e−iλφρ1/2

]
= ρ− e−iφρeiφ = ρ− e−i[φ,]ρ = ρ− ρ+ i [φ, ρ]− 1

2
[φ, [φ, ρ]] + ...

(2.4)

The equality thus require [ρ, φ] = i whose complete and continuous version is:

[ρ(x), φ(x′)] = iδ(x− x′) (2.5)

Based on our experience of Jordan-Wigner transformation, fermionic opera-

tor afford a representation of bosons: a† (x) = eiπ
∫
x′<x dx

′n(x′)b† (x) , n (x) =
b† (x) b (x) where b(x) create a boson located at x and exp(iπ

∫
x′<x

dx′n (x′))
implements the fermionic statistics (What is fermion? Fermion is a hardcore
boson in the string. This exponent operator serves as a string.) Thus, one can
apply basic Jordan-Wigner transformation to construct fermionic representa-
tion. However, after simple trial you will find the solution is not corresponding
to what we want, though right but useless. In this case, we can also implement
this routine by define θ(x) = π

∫ x
−∞ dx′ρ(x′). Exponent of this will serve as a

string operator. So what it the annihilator or creation operator? Note that the
momentum conjugated to ρ is φ and the corresponding translation operator is
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eiφ(x) creating a unity charge located at x. So the construction is naturally:

a† (x) = A
∑
σ

eiσθ(x)/πeiφ(x) (2.6)

where A is introduced to regularize the RHS. And dividing it into the right-
moving part and left-moving part:

a†σ (x) = Aeiσθ(x)/πeiφ(x) (2.7)

After shifting ρ → ρ + kF
π , and corresponding θ → θ + kFx, we get the final

answer:
a† (x) = A

∑
σ

eiσπ
−1[θ(x)+kF x]eiφ(x) (2.8)

And so does a†σ The commutation relation of our two main fields is

[φ(x), θ(x′)] = iπΘ(x′ − x) (2.9)

2.2 Bosonic Field in terms of bosonic mode

We’ve learned in basic quantum field theory that bosonic field operator can be
represented by bosonic mode operator as:

φ (x) =

∫
dp

2π
√

2 |p|
[
φpe

ipx + φ†pe
−ipx]e− 1

2α|p|

Π (x) =

∫
dp

2π
√

2 |p|
[
−iφpeipx + iφ†pe

−ipx]e− 1
2α|p|

(2.10)

It’s supposed to be emphasized that in bosonization theory, we have actually
the same identity:

φ (x) = lim
L→∞

∑
p

(
1

2πL |p|

)1/2

Sign (p) e−α|p|/2−ipx
(
b†p + b−p

)
θ (x) = lim

L→∞

∑
p

(
1

2πL |p|

)1/2

e−α|p|/2−ipx
(
b†p − b−p

) (2.11)

One can easily check this by previous knowledge.

2.3 Construction of Phenomenological Field Theory

We now construct the action of this field theory. First, inspired by Eq. 2.7,
we know that the axial and vectorial symmetry are required: shifting (φ, θ) →
(φ+φv, θ+φa). For constant φa,v, the action is intact. Thus the non-derivative
terms are excluded.

Next, the density distortion ρ = ∂xθ/π costs certain energy. Due to the
screening effect, the coulomb interaction should be short range i.e local. Up
to second order in derivatives, the action contain term like (∂xθ)

2
. To ensure

rotational invariance in the 1 + 1-D space-time, the total action is given by

S0 [θ] = c
2

∫
dxdτ

(
(∂τθ)

2
+ (∂xθ)

2
)
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Now our free theory have two undetermined parameter regularization coeffi-
cient A and the coupling constant c. As the free theory is integrable in fermion
representation, we can compare the observables forecast by those two theories

(e.g capacity). For example, we will calculate C (x, τ) =
〈(
ψ†+ψ−

)
(x, τ)

(
ψ†−ψ+

)
(0, 0)

〉
for bosonic theory. Corresponding quantity in fermionic theory is C (x, τ) =
A4
〈
e2iθ(x,τ)e−2iθ(0,0)

〉
θ
. By using Matsubara summation, we have :

G± = − 1

∂τ ′ ∓ i∂x′

∣∣∣∣
(x,τ ;0,0)

= −T
L

∑
p,ωn

1

−iωn ∓ p
e−ipx−iωnτ

' 1

2π

1

±ix− τ

(2.12)

We’ve used an integral to approximate the frequency sum and integrate over
momentum. By wick’s theorem, the correlation function is:

C = G+G− =
1

4π2

1

x2 + τ2

For bosonic system. With the interaction S[θ] = L
2cT Σq,n(q2 +ω2

n)|θq,n| also
by Matsubara summation, we have the green function for θ field:

K (x, τ) =
〈
θ (x, τ) θ (0, 0)− θ2 (0, 0)

〉
=
cT

L

∑
p,n

eipx + iωnτ

ω2 + p2
− 1 =

cT

2

∑
n

e−|ωn|x+iωnτ − 1

|ωn|

=
c

4π

a−1∫
0

dω
e−ω(x−iτ) − 1

ω
+
e−ω(x+iτ) − 1

ω

' − c

4π
ln
x2 + τ2

a2

(2.13)

Where we add a cutoff a−1 and use stationary phase approxiamtion in large x
and τ .

By using the fact
〈
eiU
〉

= e−
1
2 〈U2〉 Where U is the linear combination of φ

and θ(See the prove in appendix), we have:〈
eiU
〉

= e−
1
2 〈U2〉

C (x, τ) = A4
〈
e2i(θ(x,τ)−θ(0,0))

〉
= A4e−2〈(θ(x,τ)−θ(0,0))

2〉

= A4e4K(x,τ)

= A4

[
a2

x2 + τ2

] c
π

(2.14)

Thus, comparing 2.12 and 2.14 we have A = 1√
2πa

and c = π where a−1 is

the cutoff.
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We finally obtain the Lagrangian of the bosonic version:

L =
1

2π

[
(∂xθ)

2
+ (∂τθ)

2
]

πθ = ∂∂τθL =
∂τθ

π

(2.15)

Thus we have the commutation relation [θ(x), π(x′)] = −iδ(x−x′). Comparing
this with [φ(x), θ(x′)] = iπΘ(x′ − x), we thus have πθ = ∂xφ

π . Transforming the
action from canonical variable to fundamental fields, we have:

S [θ, πθ] =
1

2

∫
dxdτ

(
1

π
(∂xθ)

2
+ ππ2

θ + 2iπθ∂τθ

)
S [θ, φ] =

1

2π

∫
dxdτ

(
(∂xθ)

2
+ (∂xφ)

2
+ 2i∂τθ∂xφ

) (2.16)

The corresponding conserved quantity of translation symmetry is

ρtotal = ρ+ + ρ− =
∂xθ

π

j = ρ+ − ρ− = −∂xφ
π

(2.17)

Thus we have the density operator in terms of field operators:

ρ± =
1

2π
[∂xθ ∓ ∂xφ] (2.18)

2.4 Interacting System

By inserting Eq 2.18 into the interaction vertex Eq (2.2), we have:

Sint =
1

4π2

∫
dxdτ

[
(g2 + g4) (∂xθ)

2
+ (g4 − g2) (∂xφ)

2
]

(2.19)

Together with the free part, we arrive at the final expression:

S =
1

4π2

∫
dxdτ

[
g−1v(∂xθ)

2
+ gv(∂xφ)

2
+ 2i∂τθ∂xφ

]
(2.20)

Where

v =

[(
vF +

g4
2π

)2
−
( g2

2π

)2]1/2
g =

[
vF + g4

2π −
g2
2π

vF + g4
2π + g2

2π

]1/2 (2.21)

The velocity we introduce here is exactly the effective velocity we derived with
mode operator and diagonalization in (1.17).
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2.5 Functional Bosonization

In this section, we use basic functional method to implement bosonization. In
previous sections, we bosonize the theory by transforming the free part of the
fermionic Hamiltonian. Now we approach the result with the idea of decoupling
the quadric field by auxiliary fields.

We first rewrite the interaction part:

Sint =
1

2

∫
dτdxρigijρj (2.22)

Where Einstein convention is assumed and g11 = g22 = g2, g12 = g21 = g4
By invoking the identity: exp [−ρmVmnρn] =

∫
Dφ
[
− 1

4φmV
−1
mnφn − iφmρm

]
,

we have:

S
[
φ, ψ̄, ψ

]
=

∫
dxdτ

[
1

2
φig
−1
ij φj − iφiρi + ψ†i (−iσ3∂x + σ0∂τ )ijψj

]
(2.23)

A Prove the important identity

Our goal is to verify
〈
eiU
〉

= e−
1
2 〈U2〉. To achieve this, we first take the Fourier

transformation of U :

U =
∑
j

Ajφj +Bjθj =
T

L

∑
k

Akφ−k +Bkθ−k (A.1)

Where Ak = ΣjAje
−i(kxj−ωnτj) and summation of k denotes summation of

(k, ωn)

For convenience, we define Pk = (θk, φk)
T
, Qk = (Bk, Ak)

T
and obtain the

L.H.S. of the identity to be proved by taking the path integral in k-space:

〈
eiU
〉

=
1

Z

∫
DPke

− 1
2
T
L

∑
k

PT−kM
−1Pk−i[QT−kPk+P

T
−kQk]

= exp

[
−1

2

T

L

∑
q

QT−kMQk

] (A.2)

The second line we use basic Gaussian integration, where the kernel matrix M
is:

M =
π

k2 (k2 + ω2
n)

(
k2 −ikωn
−ikωn k2

)
(A.3)

To take the summation in (A.2), we need to use this two Green function:

F1 (x) =
T

L

∑
k

[1− cos (kx+ ωnτ)]
2π

ω2
n + k2

F2 (x) =
T

L

∑
k

ei(kx−ωnτ)
−i2π ωnk
ω2
n + k2

(A.4)

11



These two summations are exactly what we’ve learned from QFT. So we just
write down the answer:

F1 (x) =
1

2
ln

[
1

π2α2

(
sinh2 (xπT ) + sin2 (τπT )

)]
F2 (x) = −iArg [tan γαTπ + i tanh (xπT )]

γα = (uτ + αSign (τ))

(A.5)

Where α is the cutoff of the summation.
For example, A−kAk term is:

−1

2

T

L

∑
i,j,k,ωn

AiAj cos (k (xi − xj)− ωn (τi − τj))
π

ω2
n + k2

= −1

4

∑
i,j

AiAjF1 (xi − xj , τi − τj) +

(∑
i

Ai

)2
T

2L

∑
q

π

ω2
n + k2︸ ︷︷ ︸
∞

(A.6)

Thus, only when ΣjAj = 0 and ΣjBj = 0, the correlation function give nonzero

result and becomes very simple:e
− 1

2

∑
i,j

[−AiAj−BiBj ]F1+[AiBj+BiAj ]F2

.
Experienced reader will immediately find out that the result is exactly R.H.S

e−
1
2 〈U2〉
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